Left Termination of the query pattern sublist_in_2(g, g) w.r.t. the given Prolog program could not be shown:



Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

Clauses:

append1([], Ys, Ys).
append1(.(X, Xs), Ys, .(X, Zs)) :- append1(Xs, Ys, Zs).
append2([], Ys, Ys).
append2(.(X, Xs), Ys, .(X, Zs)) :- append2(Xs, Ys, Zs).
sublist(X, Y) :- ','(append1(U, X, V), append2(V, W, Y)).

Queries:

sublist(g,g).

We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist_in: (b,b)
append1_in: (f,b,f)
append2_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_IN_GG(X, Y) → U3_GG(X, Y, append1_in_aga(U, X, V))
SUBLIST_IN_GG(X, Y) → APPEND1_IN_AGA(U, X, V)
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → U1_AGA(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)
U3_GG(X, Y, append1_out_aga(U, X, V)) → U4_GG(X, Y, append2_in_gag(V, W, Y))
U3_GG(X, Y, append1_out_aga(U, X, V)) → APPEND2_IN_GAG(V, W, Y)
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U2_GAG(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)
U4_GG(x1, x2, x3)  =  U4_GG(x3)
SUBLIST_IN_GG(x1, x2)  =  SUBLIST_IN_GG(x1, x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x5)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x5)
U3_GG(x1, x2, x3)  =  U3_GG(x2, x3)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_IN_GG(X, Y) → U3_GG(X, Y, append1_in_aga(U, X, V))
SUBLIST_IN_GG(X, Y) → APPEND1_IN_AGA(U, X, V)
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → U1_AGA(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)
U3_GG(X, Y, append1_out_aga(U, X, V)) → U4_GG(X, Y, append2_in_gag(V, W, Y))
U3_GG(X, Y, append1_out_aga(U, X, V)) → APPEND2_IN_GAG(V, W, Y)
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U2_GAG(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)
U4_GG(x1, x2, x3)  =  U4_GG(x3)
SUBLIST_IN_GG(x1, x2)  =  SUBLIST_IN_GG(x1, x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x5)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x5)
U3_GG(x1, x2, x3)  =  U3_GG(x2, x3)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 6 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APPEND2_IN_GAG(.(Xs), .(Zs)) → APPEND2_IN_GAG(Xs, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ NonTerminationProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APPEND1_IN_AGA(Ys) → APPEND1_IN_AGA(Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

APPEND1_IN_AGA(Ys) → APPEND1_IN_AGA(Ys)

The TRS R consists of the following rules:none


s = APPEND1_IN_AGA(Ys) evaluates to t =APPEND1_IN_AGA(Ys)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APPEND1_IN_AGA(Ys) to APPEND1_IN_AGA(Ys).




We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist_in: (b,b)
append1_in: (f,b,f)
append2_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x1, x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x2, x4, x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x1, x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x2, x4, x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg(x1, x2)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_IN_GG(X, Y) → U3_GG(X, Y, append1_in_aga(U, X, V))
SUBLIST_IN_GG(X, Y) → APPEND1_IN_AGA(U, X, V)
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → U1_AGA(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)
U3_GG(X, Y, append1_out_aga(U, X, V)) → U4_GG(X, Y, append2_in_gag(V, W, Y))
U3_GG(X, Y, append1_out_aga(U, X, V)) → APPEND2_IN_GAG(V, W, Y)
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U2_GAG(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x1, x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x2, x4, x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg(x1, x2)
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)
U4_GG(x1, x2, x3)  =  U4_GG(x1, x2, x3)
SUBLIST_IN_GG(x1, x2)  =  SUBLIST_IN_GG(x1, x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x2, x4, x5)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
U3_GG(x1, x2, x3)  =  U3_GG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_IN_GG(X, Y) → U3_GG(X, Y, append1_in_aga(U, X, V))
SUBLIST_IN_GG(X, Y) → APPEND1_IN_AGA(U, X, V)
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → U1_AGA(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)
U3_GG(X, Y, append1_out_aga(U, X, V)) → U4_GG(X, Y, append2_in_gag(V, W, Y))
U3_GG(X, Y, append1_out_aga(U, X, V)) → APPEND2_IN_GAG(V, W, Y)
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U2_GAG(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x1, x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x2, x4, x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg(x1, x2)
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)
U4_GG(x1, x2, x3)  =  U4_GG(x1, x2, x3)
SUBLIST_IN_GG(x1, x2)  =  SUBLIST_IN_GG(x1, x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x2, x4, x5)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
U3_GG(x1, x2, x3)  =  U3_GG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 6 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x1, x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x2, x4, x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg(x1, x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND2_IN_GAG(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPEND2_IN_GAG(x1, x2, x3)  =  APPEND2_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND2_IN_GAG(.(Xs), .(Zs)) → APPEND2_IN_GAG(Xs, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_in_gg(X, Y) → U3_gg(X, Y, append1_in_aga(U, X, V))
append1_in_aga([], Ys, Ys) → append1_out_aga([], Ys, Ys)
append1_in_aga(.(X, Xs), Ys, .(X, Zs)) → U1_aga(X, Xs, Ys, Zs, append1_in_aga(Xs, Ys, Zs))
U1_aga(X, Xs, Ys, Zs, append1_out_aga(Xs, Ys, Zs)) → append1_out_aga(.(X, Xs), Ys, .(X, Zs))
U3_gg(X, Y, append1_out_aga(U, X, V)) → U4_gg(X, Y, append2_in_gag(V, W, Y))
append2_in_gag([], Ys, Ys) → append2_out_gag([], Ys, Ys)
append2_in_gag(.(X, Xs), Ys, .(X, Zs)) → U2_gag(X, Xs, Ys, Zs, append2_in_gag(Xs, Ys, Zs))
U2_gag(X, Xs, Ys, Zs, append2_out_gag(Xs, Ys, Zs)) → append2_out_gag(.(X, Xs), Ys, .(X, Zs))
U4_gg(X, Y, append2_out_gag(V, W, Y)) → sublist_out_gg(X, Y)

The argument filtering Pi contains the following mapping:
sublist_in_gg(x1, x2)  =  sublist_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x1, x2, x3)
append1_in_aga(x1, x2, x3)  =  append1_in_aga(x2)
append1_out_aga(x1, x2, x3)  =  append1_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
.(x1, x2)  =  .(x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
append2_in_gag(x1, x2, x3)  =  append2_in_gag(x1, x3)
[]  =  []
append2_out_gag(x1, x2, x3)  =  append2_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x2, x4, x5)
sublist_out_gg(x1, x2)  =  sublist_out_gg(x1, x2)
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_IN_AGA(.(X, Xs), Ys, .(X, Zs)) → APPEND1_IN_AGA(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPEND1_IN_AGA(x1, x2, x3)  =  APPEND1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

APPEND1_IN_AGA(Ys) → APPEND1_IN_AGA(Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

APPEND1_IN_AGA(Ys) → APPEND1_IN_AGA(Ys)

The TRS R consists of the following rules:none


s = APPEND1_IN_AGA(Ys) evaluates to t =APPEND1_IN_AGA(Ys)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APPEND1_IN_AGA(Ys) to APPEND1_IN_AGA(Ys).